
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2023

1 Instructor: Daniel Llamocca
TAs: David Stern, Luke Nuculaj

Laboratory 6
 (Due date: 005: April 12th, 006: April 13th)

OBJECTIVES
✓ Design a 16-bit microprocessor with Single-Cycle Hardwired Control.
✓ Implement an Instruction Set Architecture (ISA).

VHDL CODING
✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: Register, adder/subtractor.

FIRST ACTIVITY: 16-BIT MICROPROCESSOR – DESIGN AND SIMULATION (70/100)
DESIGN PROBLEM
▪ Implement the Simple Computer (see Notes – Unit 6): uP with 6-bit IM/DM address, 16-bit instructions, and 16-bit data.

COMPONENTS:

▪ DM, IM: 64 words, 16 bits per word. Use the files RAM_emul.vhd, my_rege.vhd. (set the proper parameters).

▪ Datapath: (note that CI[2..0] = IR[2..0], CI[15..3]=”00…0”)

✓ Register File: 8 registers (R0 – R7) are included. See Notes – Unit 6 for an example with 4 registers.

✓ ALU: Use the files: alu.vhd, alu_arith.vhd, alu_logic.vhd, super_addsub.vhd, fulladd.vhd.

▪ PC: Note that OFFSET is a 6-bit signed number. The adder uses 7 bits, from which we only retrieve the 6 LBSs.

▪ Instruction Decoder (ID): This is a large combinational circuit. The outputs depend directly on the inputs.

✓ The outputs are generated based on the instructions on IR (Instruction Register).

✓ Instruction Set: For the list of instructions, refer to Notes – Unit 6. The Instruction Set does not include instructions that
read the V and C bits. Thus, the ID does not consider these two bits.

✓ stop_ID: If stop_ID=1, it forces the signals RW, MW, OS, JS to be ‘0’.

✓ isbranch: If the instruction in IR is a branch or jump instruction, this signal is set to ‘1’.

▪ Instruction Load Control: This block is required in order to write instructions on the IM, and then to trigger program

execution. Use the file instload_ctrl.vhd (use parameters H=6, N=16) This circuit is a FSM that works as follows:

✓ To store instructions on IM from an external port: assert L_ex and then use the inputs D_ex and we_ex.

✓ To store instructions on IM using pre-stored hardwired data: assert L_in.

✓ Once instructions are written on the IM, program execution is started by asserting start for a clock cycle. The step signal

controls whether to enable program execution (step=1) or disable it (step=0).

DATAPATH

PC

Instruction

Memory

Instruction

Decoder

Z

N

FS

FS

AD

JA

OFFSETE

sclr

H=6

16

Data

Memory

MW

DI

AD

DO

Z

V

N

C

16

6

DM_DI

WE

16

CONTROL UNIT

ALU

Register

File

23 registers

IR

WE

PC

DATAPATH

OS

JS

3

IR[2..0]

4

IM_WE

E_PC

16

stop_ID

INST_LOAD

CONTROL

I
M
_
D
I

sclr_PC

isbranch

16

L_in

L_ex

D_ex

we_ex

start

step

DM_DO

IR[8..6]&IR[2..0]

DM_AD

RW DR SA SB MB

3 3 3

MD

D
R

S
A

S
B

M
B

M
D

R
W

M
W

O
S

J
S

DM_AD = AO[5..0]6

DO

DI

AO

AO

CI

6

AO: 16-bits wide.

Only the 6 LSBs are used

DO

DI

PC

H=6

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2023

2 Instructor: Daniel Llamocca
TAs: David Stern, Luke Nuculaj

PROCEDURE
▪ Create a new Vivado project. Select the corresponding Artix-7 FPGA (e.g.: XC7A50T-1CSG324 for the Nexys A7-50T).

▪ Write the VHDL code for the given circuit. Synthesize your circuit to clear syntax errors and most warnings.
✓ Note: The code for the ALU, IM, DM, and Instruction Load Control blocks is already provided. You need to instantiate

these components and set up the corresponding generic parameters.

▪ Write the VHDL testbench to simulate your circuit.
✓ Your testbench must test the following Assembly program (use a 50 MHz input clock with 50% duty cycle).

 Assembly program (pre-stored in instload_ctrl.vhd). It stores numbers from 43 downto 29 in Data Memory (DM) on

addresses 0 to 14. The number to be stored appears in R6. The program completes when BRZ R4,-7 makes PC=0.

Address VHDL code snippet Assembly Program

000000 CD(0) <= “1001100010---101” start: LDI R2,5 R2  5

000001 CD(1) <= “1001100110---111” LDI R6,7 R6  7

000010 CD(2) <= “1000010110110111” ADI R6,R6, 7 R6  14

000011 CD(3) <= “0000000100110---" MOVA R4,R6 R4  14

000100 CD(4) <= “0000010110100110” ADD R6,R4,R6 R6  28

000101 CD(5) <= “0000001110110---" loop: INC R6,R6 R6  R6+1

000110 CD(6) <= “0100000---100110” ST R4,R6 M[R4]  R6

000111 CD(7) <= “1100000111100001” BRZ R4, -7 If R4=0  PC  PC-7=0

001000 CD(8) <= “0000110100100---" DEC R4,R4 R4  R4-1

001001 CD(9) <= “1110000---010---" JMP R2 PC  R2=5

001010 … (NOP operation)

...

✓ Set L_in=1 for a clock cycle. Then wait 70 cycles for the program to be written on the Instruction Memory.

 Since they are not being used, set the inputs L_ex, we_ex, and D_ex to 0’s.

✓ Set start=1 for a clock cycle. Make sure that step = 1 during the execution of the program (for as many cycles as needed)

E_PC

sclr_PC

1 0

+

0000001

E

sclr

6

7

OFFSET

1 0

6
JA

6

PC

0&PC

7

6

OS

JS

PROGRAM COUNTER (PC)

Register

File

2M registers

ALU

0 1 MB

16

16
CI

DOAO

D

0 1 MD

16
DI

Z

V

N

C

FS

RW SA

SBDR

3

33

16

16

BUS_A BUS_B

DATAPATH

OFFSET(5)&OFFSET

7

1 2

clock

resetn

L_in

PC 0 0

start

step

...

70 cycles

1 ... 3 4

...

2B

2A

29

28

27

26

25

24

23

22

21

20

1F

1E

1D

000000

000001

000010

000011

000100

000101

000110

000111

001000

001001

001010

001011

001100

001101

001110

address DM

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2023

3 Instructor: Daniel Llamocca
TAs: David Stern, Luke Nuculaj

 Perform Behavioral Simulation of your design. Demonstrate this to the TA.

 Add internal signals to the waveform view. In particular: PC, IR, R0-R7, ID outputs, DM registers.

 To verify the correct processing of instructions, look at PC and IR. Then, observe the R0-R7 values as well as

other signals (e.g.: ID outputs). To verify that the correct data was stored on DM (Data Memory), you can add

the Individual Registers (from 0 to 14) of DM to the waveform view.

SECOND ACTIVITY: TESTING (30/100)
▪ In order to properly test this microprocessor, we need to:

✓ Set the inputs L_ex, we_ex, and D_ex to 0’s.

✓ Avoid mechanical bounding on the push buttons for L_in, start, and step. Connect the debouncer circuit

(mydebouncer.vhd, my_genpulse_sclr.vhd) on these inputs.

✓ Ensure that each pressing of step is converted to a one-cycle pulse. Connect a pulse detector (mypulse_det.vhd) to the

debounced step signal. This way one instruction is executed each time step is pressed.

 When step=0, the instload_control block issues stop_ID=1. This causes the program execution to pause.

✓ Reduce the frequency of operation to 50 MHz. Add a MMCM block with a 50 MHz output clock (MMCM_wrapper.vhd, use

O_0=2 for clockout0 = 50MHz). Then use the 50 MHz clock as the system clock.

 Due to the large combinational delay, the design cannot meet the timing constraint of the input clock (100 MHz). As

a result, we use a Digital Clock Manager (MMCM) that generates a 50 MHz clock (this timing constraint can be met).

▪ Create a top file with the modifications (as per the figure). Note that you do not need to simulate this circuit.

▪ I/O Assignment: Create the XDC file associated with your board.

✓ Suggestion (Nexys A7-50T/A7-100T, Nexys 4/DDR):

Board pin names CLK100MHZ CPU_RESET BTNU BTNL BTNC LED15-LED0

Signal names in code clock resetn L_in start step DM_DO

✓ Note: synchronous circuits always require a clock and reset signal.

 Reset signal: As a convention in this class, we use active-low reset (resetn). Thus, we tie resetn to the active-low

push button CPU_RESET of the Nexys A7-50T/A7-100T, Nexys 4/DDR board.

 Clock signal: Like other signals in the XDC file, uncomment the lines associated with the clock signal and replace
the signal label with the name used in your code. In addition, there is parameter -period that is set by default to

10.00. This is the period (in ns) that your circuit should support.

 Nexys A7-50T: In these lines, replace the label CLK100MHZ with the signal name you use in your code (clock):
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { CLK100MHZ }];

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100MHZ}];

▪ Generate and download the bitstream on the FPGA and test the Assembly Program. Demonstrate this to your TA.

✓ To test the Assembly Program, follow these steps:

 Push and release L_in.

 Push and release start.

 Push and release step. For every stroke, an instruction is executed. Do this repeatedly until the program completes

its task (this happens when the instruction BRZ R4,-7 branches back to instruction at 000000).

 The first time you execute ST R4,R6 (i.e., after 7 strokes of step) you should see 0x001D on the output DM_DO.

 The second time you execute ST R4,R6, you should see 0x001E on the output DM_DO.

 …
 The last time you execute ST R4,R6, you should see 0x002B on the output DM_DO.

* Note: after ST R4,R6 (or BRZ R4,-7) is executed, the R6 value appears on DM_DO. This is because these two

instructions cause SA=4, which results in AO=R4[5..0]. R4[5..0]: DM address where the value of R6 is stored.

uP

DM_DO

L_in

16

DebouncerL_in

start

step

D_exwe_exL_ex

Pulse
Detector

Debouncerstart

Debouncerstep

0 0
00...0

clock

clkout0
50 MHz clock

16

resetn

MMCM_wrapper

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2023

4 Instructor: Daniel Llamocca
TAs: David Stern, Luke Nuculaj

SUBMISSION
▪ Submit to Moodle (an assignment will be created):

✓ This lab sheet (as a .pdf) completed (if applicable) and signed off by the TA (or instructor).
▪ Note: The lab assignment has two activities. You get full points of the 1st activity if you demo it by the due date. You

can demo the 2nd activity by the due date or late (here, we apply a penalty towards the points of the 2nd activity).

✓ (As a .zip file) All the generated files: VHDL code, VHDL testbench, and XDC file. DO NOT submit the whole Vivado
Project.
 Your .zip file should only include one folder. Do not include subdirectories.
 It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory.

This will allow for a smooth experience with Vivado.
 You should only submit your source files AFTER you have demoed your work. Submission of work files without

demoing will be assigned NO CREDIT.

TA signature: _____________________________ Date: __________________________

	Objectives
	VHDL Coding

	First Activity: 16-bit microprocessor – Design and Simulation (70/100)
	Design Problem
	Procedure

	Second Activity: Testing (30/100)
	Submission

